Abstract

The L 3 X-ray absorption spectrum of aqueous iodide is reported, and its EXAFS is compared to theoretical spectra reconstructed from the radial distribution function of the iodide hydration obtained from classical, hybrid Quantum Mechanics Molecular Mechanics, (QM/MM) and full quantum (density functional theory, DFT) molecular dynamics simulations. Since EXAFS is mainly sensitive to short distances around the iodide ion, it is a direct probe of the local solvation structure. The comparison shows that QM/MM simulations deliver a satisfactory description of the EXAFS signal, while nonpolarizable classical simulations are somewhat less satisfactory and DFT-based simulations perform poorly. We also identify a weak anisotropy of the water solvation shell around iodide, which may be of importance in electron photoejection experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.