Abstract

The intrinsic solvent contribution to the free energy of protein-ligand interactions in solution is shown to be related to a free energy per unit area term, obtained from analysis of the solution to gas phase process, and the change in accessible area on association. Analysis of the free energy data on a per unit area basis for the solution to gas phase process leads to the conclusion that the aliphatic CH 2 group is only slightly intrinsically hydrophobic, δΔG°/ A ̊ 2 = 6 cal mol −1 A ̊ 2 , whereas the aromatic compound are actually intrinsically hydrophilic, δΔG°/ A ̊ 2 = -26 cal mol −1 A ̊ 2 . This leads to the conclusion that, for the interaction of benzene, naphthalene and anthracene with the binding site of α-chymotrypsin, the ligand-solvent free energy contribution is actually unfavorable. Since the protein-solvent contribution is small or unfavorable, the central conclusion is that the solvent contribution to protein-ligand interactions is small or unfavorable and that it is the protein-ligand non-bonded interactions that provide the driving force for association.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.