Abstract
The S=O stretching and SOH bending peaks in the vibrational spectra of HSO4−(H2O) n, with n up to 6, are analyzed by both harmonic analysis and ab initio molecular dynamics simulation. The SOH bending mode is found to be much more sensitive to the extent of hydration and to the fluctuation of hydrogen bonds than the S=O stretching mode. The SOH donor hydrogen bond is gradually stabilized by n = 4, and further shortened up to n = 6, which is the key factor to understand the trend of evolution observed in the infrared multiple photon dissociation spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.