Abstract
A coupled thermoviscoelastic frictional contact problem is investigated. The contact is modelled by the Signorini condition for the displacement velocities and the friction by the Coulomb law. The heat generated by friction is described by a non-linear boundary condition with at most linear growth. The weak formulation of the problem consists of a variational inequality for the elasticity part and a variational equation for the heat conduction part. In order to prove the existence of a solution to this problem we first use an approximation of the Signorini condition by the penalty method. The existence of a solution for the approximate problem is shown using the fixed-point theorem of Schauder. This theorem is applied to the composition of the solution operator for the contact problem with given temperature field and the solution operator for the heat equation problem with known displacement field. To obtain this proof, the unique solvability of both problems is necessary. Due to this reason it is necessary to introduce the penalty method. While the penalized contact problem has a unique solution, this is not clear for the original contact problem. The solvability of the original frictional contact problem is verified by an investigation of the limit for vanishing penalty parameter. Copyright © 1999 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.