Abstract

This paper describes the application of a solution-adaptive, three-dimensional Navier–Stokes solver to the problem of the flow in turbine internal coolant passages. First, the variation of Nusselt number in a cylindrical, multiribbed duct is predicted and found to be in acceptable agreement with experimental data. Then the flow is computed in the serpentine coolant passage of a radial inflow turbine including modeling the internal baffles and pin fins. The aerodynamics of the passage, particularly that associated with the pin fins, is found to be complex. The predicted heat transfer coefficients allow zones of poor coolant penetration and potential hot spots to be identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.