Abstract
ABSTRACTAny commutative algebra equipped with a derivation may be turned into a Lie algebra under the Wronskian bracket. This provides an entirely new sort of a universal envelope for a Lie algebra, the Wronskian envelope. The main result of this paper is the characterization of those Lie algebras which embed into their Wronskian envelope as Lie algebras of vector fields on a line. As a consequence we show that, in contrast to the classical situation, free Lie algebras almost never embed into their Wronskian envelope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.