Abstract

A model of the structure of the 22 amino acid residue gastrointestinal peptide hormone motilin in 30% hexafluoro-2-propanol has been obtained by using distance constraints obtained from two-dimensional nuclear Overhauser enhancements. A set of initial structures have been generated by using the distance geometry program DIANA, and 10 of these structures have been refined by using restrained molecular dynamics (AMBER). The resulting structures are virtually indistinguishable in terms of constraint violations and energies and display less than 0.5-A root mean square deviations (RMSD) of the backbone atom positions from Tyr7 to Lys20. A comparison of back-calculated and experimental NOE intensities indicates that RMSD's are not the best indicators of the goodness of fit or of the precision with which the structure is defined. The structure was further refined by fitting the experimental NOE data using an iterative full relaxation matrix analysis. The mean error between the observed and calculated backbone NOE intensities for the final refined structure was 0.23 for the full length of the molecule, 0.18 for the region from Glu9 to Lys20, and 0.29 for the region from Phe1 to Gly8. R factors for the same regions were 0.27, 0.19, and 0.43, respectively. All of the NOE-determined structures consistently display an alpha-helix which extends from Glu9 to Lys20. Considerable lack of definition of structure exists at the amino and carboxyl ends of the molecule and also in the vicinity of Thr6-Tyr7-Gly8. A tendency to form a wide turn appears to exist over the sequence Pro3-Ile4-Phe5-Thr6, but the structure in this region is not well defined by the NOE data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call