Abstract

A time-dependent distribution of ratios of energy scattered by the medium or reflected by the boundary surfaces (DRESOR) method was proposed to solve the transient radiative transfer in a one-dimensional slab. This slab is filled with an absorbing, scattering, and nonemitting medium and exposed to a collimated, incident serial pulse with different pulse shapes and pulse widths. The time-dependent DRESOR values, representing the temporal response of an instantaneous, incident pulse with unit energy and the same incident direction as that for the serial pulse, were proposed and calculated by the Monte Carlo method. The temporal radiative intensity inside the medium with high directional resolution can be obtained from the time-dependent DRESOR values. The transient incident radiation results obtained by the DRESOR method were compared to those obtained with the Monte Carlo method, and good agreements were achieved. Influences of the pulse shape and width, reflectivity of the boundary, scattering albedo, optical thickness, and anisotropic scattering on the transient radiative transfer, especially the temporal response along different directions, were investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.