Abstract

Monazite (CePO4) is a light rare earth element (REE) phosphate occurring as accessory mineral in metamorphic, igneous and sedimentary rocks, and is also a common mineral in REE mineral deposits. Metasomatism of monazite yields important clues about fluid-rock interaction in the crust, in particular, because its compositional variations may enable us to determine conditions of mineralization. The thermodynamic properties of monazite have been determined using several calorimetric methods, but up to the present time only a few solubility studies have been undertaken, which test the reliability of both, the thermodynamic properties of the REE phosphates and associated REE aqueous species. In this study, we have measured the solubility of the monoclinic REE phosphate end-members CePO4, SmPO4, and GdPO4 in aqueous perchloric acid solutions at temperatures from 100 to 250 °C at saturated water vapor pressure (swvp). The solubility products (Ks0) were determined according to the reaction: REEPO4 = REE3+ + PO43−.▪Combining available calorimetric data for the REE phosphates with the REE aqueous species from the Supcrt92 (slop98.dat) dataset, yields several orders of magnitude differences when compared with our solubility measurements. We have investigated ways to reconcile these discrepancies and propose a consistent set of provisional thermodynamic properties for REE aqueous species and REE phosphates that reproduce our measured solubility values. To reconcile these discrepancies, we have used the GEMS code package and GEMSFITS for parameter optimization by adjusting the standard Gibbs energy of REE3+ and REEOH2+ at 25 °C and 1 bar. An alternative optimization could involve adjustment of the standard Gibbs energy of REEPO4(s) and REEOH2+. Independently of the optimization method used, this study points to a need to revise the thermodynamic properties of REEOH2+ and possibly other REE hydroxyl species in future potentiometric studies. These revisions will have an impact on calculated solubilities of REE phosphates and our understanding of the mobility of REE in natural hydrothermal fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call