Abstract

The solubility of hydrogen in liquid binary aluminum alloys with 1, 2, and 3 wt pct lithium has been determined for the temperature range of 913 to 1073 K and pressure 5.3 × 104 to 10.7 × 104 Pa, using an appropriate version of Sieverts’ method. The results fit the Van’t Hoff isobar and Sieverts’ isotherm and the solubility,S, is given by: Al-1 pct Li: log(S/S°) − 1/2 log(P/P°) = −2113/T/k + 2.568 Al-1 pct Li: log(S/S°) − 1/2 log(P/P°) = −2797/T/k + 3.329 Al-1 pct Li: log(S/S°) − 1/2 log(P/P°) = −2889/T/k + 3.508 whereS° is a standard value of solubility equal to 1 cm3 of diatomic hydrogen measured at 273 K and 101,325 Pa per 100 g of metal, andP° is a standard pressure equal to 101,325 Pa. Added lithium progressively increases the solubility of hydrogen in liquid aluminum, due more to its effect on the entropy of solution of hydrogen, through its influence on the liquid metal structure than to an increase in the solute hydrogen atom binding enthalpy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.