Abstract

A novel particle-size conveying model was established to examine the effects of the dimension relationships of the groove depth and particle size on the solids conveying mechanism of the helically grooved feed section. In the model, one or two shear interfaces were proposed based on the dimension relationships of the groove depth and particle size, and the solid-plug embedded in the groove and screw channel were divided into two or three layers by the shear interfaces to consider the solids conveying mechanism of each layer by the boundary condition equation for positive conveying. By the particle-size model, the effects of different dimension relationships on the transformation of solids conveying mechanisms between the friction-drag conveying and the positive conveying were discussed and compared with the on-line measuring experimental data. The results showed that the shear interfaces among the solids existed indeed and the dimension relationships determined the conveying mechanism and the throughput of helically grooved extruders, which was well confirmed by the excellent consistence between the predicted and measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.