Abstract

The aerosol performance, physical properties and formation process of two corticosteroids (beclomethasone dipropionate and fluticasone propionate) and caffeine (active pharmaceutical ingredients: APIs) from ethanol-based pressurized metered dose inhaler solution formulations, containing various ethanol fractions, were evaluated using cascade impaction, thermal analysis and scanning electron microscopy. In general, the final aerosol particle size distribution (post USP induction port) was unaffected by ethanol concentration (mass median aerodynamic diameter and geometric standard deviation values for each formulation were independent of ethanol concentration (%, w/w) in the initial formulation). However, ethanol concentration directly affected the percentage of particles that passed the USP induction, resulting in a significant decrease in fine particle fraction, across all formulations, as ethanol was increased. Thus it can be concluded that particle size is governed by initial droplet diameter and API concentration, while performance is governed by drying time. The physico-chemical properties and morphology of the dried API particles, collected from cascade impactor stages, showed that the solid state was related to the glass transition temperature (Tg) and, to some extent, the saturated hydrofluoroalkane propellant (HFA)/ethanol solubility of the APIs. The low Tg API caffeine, with high HFA solubility resulted in crystalline particles, while the high Tg corticosteroids were amorphous. Furthermore, the final structure of the particles was dependent on the ethanol concentration and drying kinetics after initial droplet formation. This study has shown that the solid-state physico-chemical properties and morphology of particles is intrinsically linked to the API properties and drying kinetics of the propellant/co-solvent. These variations in aerosol efficiency, particle morphology and solid-state characteristics may have direct effects on drug efficacy and bioavailability after deposition in the lung.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.