Abstract

Sol–gel synthesis is used for the fabrication of new materials with technological applications including ceramics for implants manufacturing, usually termed bioceramics. Many bioactive and resorbable bioceramics, that is, calcium phosphates, glasses and glass–ceramics, have been improved by using the sol–gel synthesis. In addition, the soft thermal conditions of sol–gel methods made possible to synthesize more reactive materials than those synthesized by traditional methods. Moreover, new families of bioactive materials such as organic–inorganic hybrids and inorganic compounds with ordered mesostructure can be produced. In hybrid materials, the inorganic component ensures the bioactive response whereas the organic polymeric component allows modulating other properties of the resulting biomaterial such as mechanical properties, degradation, etc. On the other hand, the sol–gel processes also allow the synthesis of silica ordered mesoporous materials, which are bioactive and exhibit – as an added value – a possible application as matrices for the controlled release of biologically active molecules (drugs, peptides, hormones, etc.). Finally, by combining the bioactive glasses composition with synthesis strategies of mesoporous materials, template glasses with ordered mesoporosity can be obtained. In this chapter, the advances that sol–gel technology has brought to the silica-based bioactive bioceramics are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call