Abstract

Transgenic tobacco P6 over-expressing ferritin is known to activate iron transport systems and to have increased iron content. Iron phytoextraction by this transgene is then expected to be higher than that of the wild-type (WT). In the present study, the possibility to modify iron availability for bacteria via the cultivation of the transgene P6 was explored by comparing the sensitivity to iron stress of bacteria isolated from the rhizosphere of the two plant genotypes (WT and P6). This sensitivity was evaluated by measuring the bacterial density when plated on a solid media depleted (supplemented with 8-hydroxiquinoline) or not (supplemented with Fe-8-hydroxyquinoline) in iron. The experimental conditions favorable to the differential iron accumulation between the wild-type and transgenic tobacco were identified. The two plant genotypes were grown in three soils (Hervau, Thory and Oudun) chosen for their differences in iron content, and the plants were yielded at three stages (vegetative, floral bud and flowering). The highest differential accumulation of iron in favor of the over-expressing transgene was found in the plants at the floral bud stage when cultivated in the Oudun and Thory soils. Since at that stage, the plant growth was significantly higher in the Oudun soil, the phytoextraction of iron was the highest in this soil. At the floral bud stage, bacteria isolated from the rhizosphere of the transgene cultivated in the Oudun and Thory soils appeared to be less susceptible to iron stress than those from the wild-type. Bacterial density recovered on agar medium depleted in iron was significantly the highest in the rhizosphere of the transgene cultivated in the Oudun soil. Altogether, these data indicate that the over-expressing ferritin transgenic plants, that accumulate and extract more iron from the rhizosphere than the wild-type plants, select in their rhizosphere bacteria less susceptible to iron stress compared to those selected by the wild-type plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.