Abstract
Microbial biomass represents a substantial source of labile C contributing to soil organic matter (SOM) maintenance. Microbial residues may associate with the soil matrix through a variety of mechanisms, reducing its bioavailability and increasing its persistence in soil. Our objective was to examine soil matrix effects on the stability of non-living microbial C inputs in two contrasting forest ecosystems by following microbial residues (Fungi, Actinobacteria, Gram-positive bacteria (Gm +), Gram-negative bacteria (Gm −)) into SOM fractions in a temperate forest in California (CA) and a tropical forest in Puerto Rico (PR) for 3 and 2 years, respectively. We isolated 3 SOM fractions: (i) free light fraction (FLF), (ii) occluded light fraction (OLF), and (iii) dense fraction (DF). Additionally, we characterized SOM fraction chemistry to infer quality and source of native fraction SOM. Our results showed greater stabilization as mineral-associated microbial C (i.e., as DF and OLF), compared with loose detrital C (i.e., FLF). There was no microbial group effect (i.e., differences in fraction C recovery among different microbial cell types). Our findings suggest that mineral association is more important for stabilizing non-living microbial C in soil than the cellular structure of the initial source of microbial inputs, with site specific edaphic factors as the major controllers of the amount of microbial residues stabilized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.