Abstract

Batrachotoxinin-A [(3)H]benzoate ([(3)H]BTX-B) binds specifically and with high affinity (K(D) 48 nM) to sites (B(max) 2.1 pmol/mg protein) associated with voltage-dependent sodium channels in rodent brain vesicular preparations. High affinity binding requires the presence of scorpion (Leiurus) venom and a membrane potential. Local anesthetics antagonize the binding. Nonspecific binding is defined in the presence of veratridine. In particulate preparations from electroplax of the eel Electrophorus electricus, [(3)H]BTX-B binds with a K(D) of about 140 nM and a B(max) of 2.5 pmol/mg protein in the presence of scorpion venom. Higher concentrations of scorpion venom are required to enhance binding in Electrophorus preparations than in brain preparations. Local anesthetics antagonize binding in Electrophorus preparations with potencies similar to those in brain preparations. Veratridine and batrachotoxin are less potent in blocking binding in Electrophorus than in brain preparations. It appears likely that binding in Electrophorus preparations is primarily to membrane fragments rather than vesicular entities as in brain. Binding of [(3)H]BTX-B to particulate preparations from electroplax of the ray Torpedo californica and the catfish Malapterurus electricus is mainly nonspecific. Scorpion venom does not enhance total binding and local anesthetics are not effective in antagonizing binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call