Abstract

We consider the 2D Navier-Stokes equation on $\mathbb T \times \mathbb R$, with initial datum that is $\varepsilon$-close in $H^N$ to a shear flow $(U(y),0)$, where $\| U(y) - y\|_{H^{N+4}} \ll 1$ and $N>1$. We prove that if $\varepsilon \ll \nu^{1/2}$, where $\nu$ denotes the inverse Reynolds number, then the solution of the Navier-Stokes equation remains $\varepsilon$-close in $H^1$ to $(e^{t \nu \partial_{yy}}U(y),0)$ for all $t>0$. Moreover, the solution converges to a decaying shear flow for times $t \gg \nu^{-1/3}$ by a mixing-enhanced dissipation effect, and experiences a transient growth of gradients. In particular, this shows that the stability threshold in finite regularity scales no worse than $\nu^{1/2}$ for 2D shear flows close to the Couette flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.