Abstract
Specific soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins are required for different membrane transport steps. The SNARE Vti1a has been colocalized with Golgi markers and Vti1b with Golgi and the trans-Golgi network or endosomal markers in fibroblast cell lines. Here we study the distribution of Vti1a and Vti1b in brain. Vti1b was found in synaptic vesicles but was not enriched in this organelle. A brain-specific splice variant of Vti1a was identified that had an insertion of seven amino acid residues next to the putative SNARE-interacting helix. This Vti1a-beta was enriched in small synaptic vesicles and clathrin-coated vesicles isolated from nerve terminals. Vti1a-beta also copurified with the synaptic vesicle R-SNARE synaptobrevin during immunoisolation of synaptic vesicles and endosomes. Therefore, both synaptobrevin and Vti1a-beta are integral parts of synaptic vesicles throughout their life cycle. Vti1a-beta was part of a SNARE complex in nerve terminals, which bound N-ethylmaleimide-sensitive factor and alpha-SNAP. This SNARE complex was different from the exocytic SNARE complex because Vti1a-beta was not coimmunoprecipitated with syntaxin 1 or SNAP-25. These data suggest that Vti1a-beta does not function in exocytosis but in a separate SNARE complex in a membrane fusion step during recycling or biogenesis of synaptic vesicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.