Abstract

SNAIL1 is a key regulator of epithelial-mesenchymal transition (EMT) and its expression is associated with tumor progression and poor clinical prognosis of cancer patients. Compared to the studies of SNAIL1 stability and its transcriptional regulation, very limited knowledge is available regarding effective approaches to directly target SNAIL1. In this study, we revealed the potential regulation of SNAIL1 gene expression by G-quadruplex structures in its promoter. We first revealed that the negative strand of the SNAIL1 promoter contained a multi-G-tract region with high potential of forming G-quadruplex structures. In circular dichroism studies, the oligonucleotide based on this region showed characteristic molar ellipticity at specific wavelengths of G-quadruplex structures. We also utilized native polyacrylamide gel electrophoresis, gel-shift assays, immunofluorescent staining, dimethyl sulfate footprinting and chromatin immunoprecipitation studies to verify the G-quadruplex structures formed by the oligonucleotide. In reporter assays, disruption of G-quadruplex potential increased SNAIL1 promoter-mediated transcription, suggesting that G-quadruplexes played a negative role in SNAIL1 expression. In a DNA synthesis study, we detected G-quadruplex-mediated retardation in the SNAIL1 promoter replication. Consistently, we discovered that the G-quadruplex region of the SNAIL1 promoter is highly enriched for mutations, implicating the clinical relevance of G-quadruplexes to the altered SNAIL1 expression in cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.