Abstract

We investigate the Peierls transition in finite chains by exact (Lanczos) diagonalization and within a seminumerical method based on the factorization of the electron-phonon wave function (Adiabatic Ansatz, AA). AA can be applied for mesoscopic chains up to micrometer sizes and its reliability can be checked self-consistently. Our study demonstrates the important role played for finite systems by the tunneling in the double well potential. The chains are dimerized only if their size N exceeds a critical value Nc which increases with increasing phonon frequency. Quantum phonon fluctuations yield a broad transition region. This smooth Peierls transition contrasts not only to the sharp mean field transition, but also with the sharp RPA soft mode instability, although RPA partially accounts for quantum phonon fluctuations. For weak coupling the dimerization disappears below micrometer sizes; therefore, this effect could be detected experimentally in mesoscopic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.