Abstract

The rotational spectra of coffee furanone (2-methyltetrahydrofuran-3-one) have been measured in the frequency range from 2.0 to 26.5 GHz using a molecular jet Fourier transform microwave spectrometer. Quantum chemical calculations used for the conformational analysis yielded two stable twist conformers, which were described using the Cremer–Pople notation for five-membered rings. The experimental spectrum of the more stable conformer with the methyl group in equatorial position was assigned and fitted using a rigid rotor model with centrifugal distortion corrections. The spectra of all five 13C-isotopologues could be observed in natural abundance. The carbon atom structure was experimentally deduced using Kraitchman’s equations and compared with the structure calculated by quantum chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.