Abstract

The solid-state transformer (SST) was conceived as a replacement for the conventional power transformer, with both lower volume and weight. The smart transformer (ST) is an SST that provides ancillary services to the distribution and transmission grids to optimize their performance. Hence, the focus shifts from hardware advantages to functionalities. One of the most desired functionalities is the dc connectivity to enable a hybrid distribution system. For this reason, the ST architecture shall be composed of at least two power stages. The standard design procedure for this kind of system is to design each power stage for the maximum load. However, this design approach might limit additional services, like the reactive power compensation on the medium voltage (MV) side, and it does not consider the load regulation capability of the ST on the low voltage (LV) side. If the SST is tailored to the services that it shall provide, different stages will have different designs, so that the ST is no longer a mere application of the SST but an entirely new subject.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.