Abstract
A pair of fine tweezers and a steady hand may well be enough to pick up a grain of sand, but what would you use to hold something hundreds of times smaller still, the size of only one micron? The answer is to use a device that is not mechanical in nature but that relies instead on the tiny forces that light exerts on small particles: “optical tweezers.” In recent years, this technique has become central to nanotechnology for the manipulation of small particles, even individual molecules. It is also an ideal illustration of how classroom physics is applied to cutting-edge research, combining concepts such as the vector nature of momentum and force, Newton's laws, optics, the wave-particle duality of light, and thermodynamics. The physics behind optical tweezers has many layers of complexity, but it can be reduced to a basic principle: the conservation of momentum. This paper guides the reader through a much simplified demonstration of this “tweezing effect” using a question-answer approach, leaving the reader with the choice to treat each step as a problem exercise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.