Abstract

Properties of traveling wave-beam interaction in a centered dielectric-rod loaded, arbitrarily-shaped helical groove slow-wave structure (SWS) are investigated for a thin annular electron beam. The “hot” dispersion equation is obtained by means of the self-consistent field theory, and the small signal analysis is carried out including the effects of the dielectric-rod parameters and the groove shapes. The numerical results show that the bandwidth of the helical groove TWT is expanded by loading dielectric-rod, however, the small-signal gain is reduced; and when the groove shape changes from the swallow-tail shape to the triangle shape, the working frequency increases , while the peak gain decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.