Abstract

Salmonella Typhimurium (STM) is one of the most important food-borne bacteria that seriously harms livestock and human beings, which is capable of regulating the expression of its own genes in a variety of ways to adapt to a wide variety of adverse environmental stresses. To understand the regulatory roles of sRNA STnc1480 on the capability of STM, the STnc1480 gene-deficient strain △STnc1480 and its complement strain △STnc1480/STnc1480 were generated, and the impacts of STnc1480 gene deficiency on the capability of responding to different environmental stresses, biofilm(BF)formation and pathogenicity were analyzed, respectively. Then the target genes that were regulated by STnc1480 were also analyzed and explored. Compared with parent and complement strains, the deficiency of the STnc1480 gene significantly reduced the BF formation. Moreover, the capacities of adhesion and invasiveness of the △STnc1480 strain to macrophages were also significantly reduced, while the LD50 in mice was significantly increased. The bacterial loads in liver and spleen were significantly reduced, and the pathological damage was alleviated. It was confirmed that the STnc1480 could be complementary to the 5'-UTR (-52 to -71 bases) region of lpfA mRNA. The bacterial dual-plasmid reporting system confirmed that STnc1480 was capable of interacting with the mRNA of the lpfA gene, suggesting that STnc1480 can regulate the 5'-UTR of the lpfA mRNA at post-transcription level to reduce the expression of the bacterial fimbria, thus reducing the BF formation and pathogenicity of STM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call