Abstract

Legionella pneumophila (Lp) is a waterborne bacterium able to infect human alveolar macrophages, causing Legionnaires' disease. Lp can survive for several months in water, while searching for host cells to grow in, such as ciliates and amoeba. In Lp, the sigma factor RpoS is essential for survival in water. A previous transcriptomic study showed that RpoS positively regulates the small regulatory RNA Lpr10. In the present study, deletion of lpr10 results in an increased survival of Lp in water. Microarray analysis and RT-qPCR revealed that Lpr10 negatively regulates the expression of RpoS in the postexponential phase. Electrophoretic mobility shift assay and in-line probing showed that Lpr10 binds to a region upstream of the previously identified transcription start sites (TSS) of rpoS. A third putative transcription start site was identified by primer extension analysis, upstream of the Lpr10 binding site. In addition, nlpD TSS produces a polycistronic mRNA including the downstream gene rpoS, indicating a fourth TSS for rpoS. Our results suggest that the transcripts from the third and fourth TSS are negatively regulated by the Lpr10 sRNA. Therefore, we propose that Lpr10 is involved in a negative regulatory feedback loop to maintain expression of RpoS to an optimal level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call