Abstract

The protein “BCL-2-associated athanogene-1” (BAG-1), which exists in multiple isoforms, promotes cancer cell survival and is overexpressed in many different cancers. As a result, BAG-1-targeted therapy appears to be a promising strategy with which to treat cancer. It has previously been shown that the 5′UTR of the BAG-1 mRNA contains a guanine rich region that folds into a G-quadruplex structure which can modulate both its cap-dependent and its cap-independent translation. Accumulating data regarding G-quadruplex binding proteins suggest that these proteins can play a central role in gene expression. Consequently, the identification of the proteins that could potentially bind to the G-quadruplex of the BAG-1 mRNA was undertaken. Label-free RNA pulldown assays were performed using protein extracts from colorectal cancer cells and this leads to the detection of RNA G4 binding proteins by LC-MS/MS. The use of G-quadruplex containing RNA, as well as of a mutated version, ensured that the proteins identified were specific for the RNA G-quadruplex structure and not just general RNA binding proteins. Following confirmation of the interaction, the Small Nuclear Ribonucleoprotein Polypeptide A (SNRPA) was shown to bind directly to the BAG-1 mRNA through the G-quadruplex, and knock down experiments in colorectal cancer cells suggested that it can modulate the expression level of BAG-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call