Abstract
Protein aggregation, particularly the formation of amyloid fibrils, is associated with numerous human disorders, including Parkinson's disease. This neurodegenerative condition is characterised by the accumulation of α-Synuclein amyloid fibrils within intraneuronal deposits known as Lewy bodies or neurites. C-terminally truncated forms of α-Synuclein are frequently observed in these inclusions in the brains of patients, and their increased aggregation propensity suggests a role in the disease's pathogenesis. This study demonstrates that the small molecule ZPD-2 acts as a potent inhibitor of both the spontaneous and seeded amyloid polimerisation of C-terminally truncated α-Synuclein by interfering with early aggregation intermediates. This dual activity positions this molecule as a promising candidate for therapeutic development in treating synucleinopathies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.