Abstract

Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.

Highlights

  • Streptococcus pneumoniae (S. pneumoniae) is an important human pathogen

  • Pyrimidinedione is effective against MSSA, MRSA, and Staphylococcus epidermidis biofilms in vitro, and it is not cytotoxic to eukaryotic cells

  • The inhibitory effect of pyrimidinedione was significant in all S. pneumoniae serotypes tested, indicating that the inhibitory effect of pyrimidinedione was independent of serotypes, and the application of this molecule could be extent to other serotypes biofilms as well

Read more

Summary

Introduction

Streptococcus pneumoniae (S. pneumoniae) is an important human pathogen. It causes severe and invasive infections, such as pneumonia, septicemia, otitis media, and meningitis, especially in children, the elderly, and immuno-compromised patients [1,2,3]. S. pneumoniae initially colonize the nasopharynx and may persist for months without causing illness, forming specialized structures called biofilms [4,5]. Pneumococci from these biofilms can migrate to other sterile anatomical sites, causing severe biofilm-associated infections such as pneumonia and otitis media [6,7,8]. A biofilm is defined as a thin layer of bacteria that adhere to each other and to a living tissue or inert surfaces. Existing antimicrobial compounds mainly developed to target planktonic bacteria may not be as effective against biofilms. Effective anti-biofilm strategies could inhibit initial bacterial attachment and colonization, interfere with signaling pathways important for biofilm development, or disrupt the biofilm matrix [19,20,21]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call