Abstract

IntroductionThe establishment of drug resistance following treatment with chemotherapeutics is strongly associated with poor clinical outcome in patients, and drugs that target chemoresistant tumors have the potential to increase patient survival. In an effort to identify biological pathways of chemoresistant breast cancers that can be targeted therapeutically, a small molecule screen utilizing metastatic patient-derived breast cancer cells was conducted; from this previous report, the cytotoxic small molecule, C-6, was identified for its ability to selectively kill aggressive breast cancer cells in a caspase-independent manner. Here, we describe the cellular and molecular pathways induced following C-6 treatment in both normal and breast cancer cell lines.MethodsTranscriptome analyses and protein expression experiments were used to measure endoplasmic reticulum (ER) stress following C-6 treatment. Studies utilizing transmission electron microscopy and metabolomic profiling were conducted to characterize mitochondrial morphology and function in C-6-treated cells. Oxygen consumption rates and oxidative stress were also measured in breast cancer and normal mammary epithelial cells following treatment with the small molecule. Finally, structural modifications were made to the molecule and potency and cancer selectivity were evaluated.ResultsTreatment with C-6 resulted in ER stress in both breast cancer cells and normal mammary epithelial cells. Gross morphological defects were observed in the mitochondria and these aberrations were associated with metabolic imbalances and a diminished capacity for respiration. Following treatment with C-6, oxidative stress was observed in three breast cancer cell lines but not in normal mammary epithelial cells. Finally, synthetic modifications made to the small molecule resulted in the identification of the structural components that contribute to C-6’s cancer-selective phenotype.ConclusionsThe data reported here implicate mitochondrial and ER stress as a component of C-6’s biological activity and provide insight into non-apoptotic cell death mechanisms; targeting biological pathways that induce mitochondrial dysfunction and ER stress may offer new strategies for the development of therapeutics that are effective against chemoresistant breast cancers.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-014-0472-0) contains supplementary material, which is available to authorized users.

Highlights

  • The establishment of drug resistance following treatment with chemotherapeutics is strongly associated with poor clinical outcome in patients, and drugs that target chemoresistant tumors have the potential to increase patient survival

  • The cytotoxic molecule C-6 is selective for cancer cells In a previous report, we identified a novel diarylmethinecontaining small molecule, C-6, that selectively kills breast cancer cells (Figure 1A) [2]

  • The small molecule was found to be cytotoxic against chemoresistant patient-derived primary cells in addition to multiple breast cancer cell lines at low micromolar concentrations

Read more

Summary

Introduction

The establishment of drug resistance following treatment with chemotherapeutics is strongly associated with poor clinical outcome in patients, and drugs that target chemoresistant tumors have the potential to increase patient survival. In an effort to identify biological pathways of chemoresistant breast cancers that can be targeted therapeutically, a small molecule screen utilizing metastatic patient-derived breast cancer cells was conducted; from this previous report, the cytotoxic small molecule, C-6, was identified for its ability to selectively kill aggressive breast cancer cells in a caspase-independent manner. An additional limitation of widely used anticancer drugs is the development of multidrug chemoresistance [1] It has been an interest of our laboratories to identify novel small molecules that selectively kill cancer cells, and use these compounds as tools to define biological pathways necessary for the viability of breast cancer cells. We previously reported the identification of such a molecule, C-6, and established its ability to kill, in a caspase-independent manner, metastatic primary cells from patients with chemoresistant breast cancer [2]. We report the results of studies on the biological activity of C-6 and describe structure-activity relationships for the molecule’s cancer-selective cytotoxicity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call