Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor alpha family of cytokines that preferentially induces apoptosis in transformed cells, making it a promising cancer therapy. However, many neoplasms are resistant to TRAIL-induced apoptosis by mechanisms that are poorly understood. We demonstrate that the expression of the small heat shock protein alpha B-crystallin (but not other heat shock proteins or apoptosis-regulating proteins) correlates with TRAIL resistance in a panel of human cancer cell lines. Stable expression of wild-type alpha B-crystallin, but not a pseudophosphorylation mutant impaired in its assembly and chaperone function, protects cancer cells from TRAIL-induced caspase-3 activation and apoptosis in vitro. Furthermore, selective inhibition of alpha B-crystallin expression by RNA interference sensitizes cancer cells to TRAIL. In addition, wild-type alpha B-crystallin promotes xenograft tumor growth and inhibits TRAIL-induced apoptosis in vivo in nude mice, whereas a pseudophosphorylation alpha B-crystallin mutant impaired in its anti-apoptotic function inhibits xenograft tumor growth. Collectively, these findings indicate that alpha B-crystallin is a novel regulator of TRAIL-induced apoptosis and tumor growth. Moreover, these results demonstrate that targeted inhibition of alpha B-crystallin promotes TRAIL-induced apoptosis, thereby suggesting a novel strategy to overcome TRAIL resistance in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.