Abstract

Locomotory muscle function of ectothermic fishes is generally depressed in cold waters, making them vulnerable to avian and mammalian predators whose body temperature remains high. Paradoxically, Greenland sharks Somniosus microcephalus exhibit the reverse of this usual predator–prey thermal pattern by apparently hunting seals in Arctic waters. To examine whether this species possesses cold-adaptations that enhance its swimming performance, we used data-logging tags to measure swim speed and tail-beat frequency (which reflects muscle-shortening speed) of six free-swimming sharks (204–343kg). For comparison, we compiled these parameters for wild fishes from the literature over a wide body mass range (0.2–3900kg) and examined the scaling relationships using phylogenetically informed statistics. The sharks cruised at 0.34m·s−1 with a tail-beat frequency of 0.15Hz, both of which were the lowest values for their size across fish species. The mean and maximum speed (0.74m·s−1) and acceleration during burst swimming (0.008m·s−2) were much lower than those of seals. Our results indicate that the swimming performance of Greenland sharks is limited by cold waters (~2°C) and insufficient to catch swimming seals. However, Arctic seals sleep in water to avoid predation by polar bears Ursus maritimus, which may leave them vulnerable to this cryptic slow-swimming predator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.