Abstract
Using the plane wave expansion method, we calculated the energy band distribution of face-centered cubic (FCC) photonic crystals in the reciprocal lattice space. The influences of various dielectric constant materials on the properties of slow light are discussed. The results show that, in the close-packed hollow spherical FCC photonic crystal, the group velocity of light can be slow down to the velocity about $$10^{-4}c$$ . And the slow light effect tends to occur more strongly in the hollow spherical structure in comparison with the dielectric spherical structure. The possible applications of the slow light effect in the 3D photonic crystal are proposed for solar cells and optical communication devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.