Abstract

This paper studies the dynamic evolution behaviors of the hydro-turbine governing system by using Adams–Bashforth–Moulton algorithm. Based on the non-autonomous dynamic model of the hydro-turbine governing system, the effects of the frequency and intensity of periodic excitation on the dynamic characteristics of the hydro-turbine governing system are analyzed in detail. Due to the different scales between the natural frequency and the excitation frequency, the fast-slow effect is obviously found on the behavior of the system under different motion modes. Furthermore, the influence rules of the fast-slow effect for the dynamic behavior of the hydro-turbine governing system are given. The results of the study can contribute to the optimization analysis and control of the hydro-turbine governing system in practical process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.