Abstract
The large-amplitude rectilinear ‘slow-drift’ oscillation of a floating body constrained by a weak restoring force in random waves is considered. The free-surface flow is approximated by a perturbation series expansion for a small slow-drift velocity and wave steepness. A model slow-drift equation of motion is derived, the time-dependent slow-drift excitation force and wave damping coefficient are defined and the complete series of free-surface problems governing their magnitude are formulated. The free-surface problem governing the wave-drift damping coefficient in monochromatic waves is studied and an explicit solution is obtained for a vertical circular cylinder of infinite draught. This solution is extended for arrays of vertical circular cylinders by employing an exact interaction theory. The wave-drift damping coefficient is evaluated for configurations of interest in practice and an expression is derived for the steady drifting velocity of an unconstrained body in regular waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.