Abstract

A distinguishing trait of the three known Galactic recurrent novae with the shortest orbital periods, T Pyx, IM Nor, and CI Aql, is that their optical decline time-scales are significantly longer than those of the other recurrent systems. On the other hand, some estimates of the mass of the ejecta, the velocity of the ejecta, and the duration of the soft X-rays emission of these systems are of the order of those of the other recurrent systems and the fast classical novae. We put forth a tentative explanation of this phenomenon. We propose that in these systems part of the material transferred from the companion during the first few days of the eruption remains within the Roche lobe of the white dwarf, preventing the radiation from ionizing the ejecta of the system and increasing the optical decline time-scale. We explain why this phenomenon is more likely in systems with a high mass transfer rate and a short orbital period. Finally, we present a schematic model that shows that the material transferred from the companion is sufficient to absorb the radiation from the white dwarf in these systems, ultimately supporting this scenario as quantitatively realistic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.