Abstract

Rockfall is the most frequent major hazard in mountainous areas. For hazard assessment and further countermeasure design, realistic and accurate prediction of rockfall trajectory is an important requirement. Thus, a modeling method to represent both geometrical parameters of slope and falling rock mass is required. This study, suggests taking the advantages of discontinues deformation analysis (DDA) and geographical information system (GIS). In this study, after developing a three dimensional (3D) DDA program, firstly a special element named contact face element (CFE) was introduced into 3D DDA; secondly, effectively modeling tools with GIS support were developed. The implementation of CFE also improves the efficiency of both the contact searching and solution process. Then a simple impact model was devised to compare the 3D DDA implemented directly with a sliding model with theoretical analysis to verify the reliability of the modified 3D DDA program and investigate the parameter settings. Finally, simulations concerning rock shapes and multi-rocks were carried out to show the applicable functions and advantages of the newly developed rockfall analysis code. It has been shown that the newly developed 3D DDA program with GIS support is applicable and effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.