Abstract

The Sliding Hinge Joint with Asymmetric Friction Connectors (SHJ), to give its full name, is a semi-rigid moment resisting joint used between the beams and columns of a moment-resisting steel frame and also at the column base between the column and the ground. It’s performance is intended to be as follows: 1) On completion of construction, rigid under serviceability limit state conditions, 2) During a severe earthquake, allowing controlled rotation between the column and the beam or foundation on designated friction sliding planes within the connection, then 3) Returning to its rigid in-service condition at the end of the severe shaking with the building returning to its pre-earthquake position (self-centering). During its development and proof of concept through large scale testing, the initial results showed that the SHJ as originally designed and detailed performs 1) and 2) very well, but the bolts in the friction sliding planes loose much of their original installed bolt tension during significant sliding, lowering the level at which rotation within the joint will occur post severe earthquake. A concerted research programme of component testing, analytical model development and numerical modelling in recent years has developed solutions to the bolt tension loss issue as well as enhanced the joint’s performance to deliver dependable self-centering capability for the building. This work marks the final steps towards developing an optimum low damage seismic-resisting steel moment frame system. This paper presents key findings from the research work and general recommendations for the optimum performing sliding hinge joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call