Abstract
Chromatin-modifying enzymes play a fundamental role in regulating chromatin structure so that DNA replication is spatially and temporally coordinated. For example, the lysine demethylase 4A/Jumonji domain-containing 2A (KDM4A/JMJD2A) is tightly regulated during the cell cycle. Overexpression of JMJD2A leads to altered replication timing and faster S phase progression. In this study, we demonstrate that degradation of JMJD2A is regulated by the proteasome. JMJD2A turnover is coordinated through the SKP1-Cul1-F-box ubiquitin ligase complex that contains cullin 1 and the F-box and leucine-rich repeat protein 4 (FbxL4). This complex interacted with JMJD2A. Ubiquitin overexpression restored turnover and blocked the JMJD2A-dependent faster S phase progression in a cullin 1-dependent manner. Furthermore, increased ubiquitin levels decreased JMJD2A occupancy and BrdU incorporation at target sites. This study highlights a finely tuned mechanism for regulating histone demethylase levels and emphasizes the need to tightly regulate chromatin modifiers so that the cell cycle occurs properly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.