Abstract
A high order approximation, the SKN method—a mnemonic for synthetic kernel—is proposed for solving radiative transfer problems in participating medium. The method relies on approximating the integral transfer kernel by a sum of exponential kernels. The radiative integral equation is then reducible to a set of coupled second-order differential equations. The method is tested for one-dimensional plane-parallel participating medium. Three quadrature sets are proposed for the method, and the convergence of the method with the proposed sets is explored. The SKN solutions are compared with the exact, PN, and SN solutions. The SK1 and SK2 approximations using quadrature Set-2 possess the capability of solving radiative transfer problems in optically thin systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.