Abstract

BackgroundSkin microbiota are likely to be important in the development of conditions such as psoriatic arthritis. Profiling the bacterial community in the psosriatic plaques will contribute to our understanding of the role of the skin microbiome in these conditions. The aim of this work was to determine the optimum study design for work on the skin microbiome with use of the MiSeq platform. The objectives were to compare data generated from two platforms for two primer pairs in a low density mock bacterial community. MethodsDNA was obtained from two low density mock communities of 11 diverse bacterial strains (with and without human DNA supplementation) and from swabs taken from the skin of four healthy volunteers. The DNA was amplified with primer pairs covering hypervariable regions of the 16S rRNA gene: primers 63F and 519R (V1-V3), and 347F and 803R (V3-V4). The resultant libraries were indexed for the MiSeq and Roche454 platforms and sequenced. Both datasets were de-noised, cleaned of chimeras, and analysed by use of QIIME software (version 1.8.0). FindingsNo significant difference in the diversity indices at the phylum and the genus level between the platforms was seen. Comparison of the diversity indices for the mock community data for the two primer pairs demonstrated that the V3-V4 hypervariable region had significantly better capture of bacterial diversity than did the V1-V3 region. Amplification with the same primer pairs showed strong concordance within each platform (98·9–99·8%), with negligible effect of spiked human DNA contamination. Comparison at the family level classification between samples processed on the MiSeq and Roche454 platforms using the V3-V4 hypervariable region also showed a high level of concordance (87%), although less so for the V1-V3 primers (10%). The pilot data from healthy volunteers were similar. InterpretationResults obtained from the V3-V4 16S rRNA hypervariable region, sequencing on the MiSeq and Roche454 platforms, were concordant between replicates, and between each other. These findings suggest that the MiSeq platform, and these primers, is a comparable method for determining skin microbiota to the widely used Roche454 methodology. FundingNIHR Manchester Musculoskeletal Biomedical Research Unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.