Abstract
Given a Riordan array (gn,k)n,k∈N, its vertical half (g2n−k,n)n,k∈N and horizontal half (g2n,n+k)n,k∈N are studied separately before. In the present paper, we introduce the skew (r,s)-halves of a Riordan array which are infinite lower triangular matrices with generic (n,k)-th entries g2n+(s−2)k+r,n+(s−1)k+r for n≥k≥0. This allows us to discuss the vertical half and horizontal half in a uniform context. We show that the skew halves of a Riordan array are all Riordan arrays. As applications, we find several new identities involving the Pascal matrix, and Catalan triangles by applying the skew halves. We also consider the inversion problems: given a Riordan array G, we can construct its Riordan antecedent H such that the (r,s)-half of H is equal to G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.