Abstract

Determining the identity and functional role of proteins involved in biomineralization and the formation of skeletons is critical to our understanding of the process. Proteomics has allowed rapid characterization of the proteins occluded within mineralized tissue, but the large numbers of proteins detected makes it difficult to assign the relative importance of each protein. We have taken a comparative approach, examining the skeletal proteome of different species of echinoderms in order to identify the proteins that are conserved and likely to be important. Our previous study comparing the skeletal proteome of the brittle star Ophiocoma wendtii to the published proteomes of the sea urchin Strongylocentrotus purpuratus revealed some conservation of proteins, but indicated that the C-type lectin domain-containing spicule matrix proteins abundant in the sea urchin skeletal proteome were not conserved in the brittle star. Here we examine the skeletal proteome of a different species of brittle star, Ophiothrix spiculata. We have isolated the proteins from the skeleton of O. spiculata and performed LC/MS/MS to identify peptides present. Comparison to transcriptome and genome databases revealed the proteins present in the O. spiculata proteome. Despite being diverged for several million years, the two brittle stars have very similar proteins in their skeletons. Included is a fibrinogen C-like lectin and several C-type lectins proteins, which we describe in detail. The unusual number of C-type lectins found in the S. purpuatus skeleton and the repetitive regions seen in those spicule matrix proteins are not present in O. spiculata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.