Abstract
A cellular bleb grows when a portion of the cell membrane detaches from the underlying cortex under the influence of a cytoplasmic pressure. We develop a quantitative model for the growth and dynamics of these objects in a simple two-dimensional setting. In particular, we first find the minimum cytoplasmic pressure and minimum unsupported membrane length for a stationary bleb to nucleate and grow as a function of the membrane-cortex adhesion. We next show how a bleb may travel around the periphery of the cell when the cytoplasmic pressure varies in space and time in a prescribed way and find that the traveling speed is governed by the speed of the pressure change induced by local cortical contraction while the shape of the traveling bleb is governed by the speed of cortical healing. Finally, we relax the assumption that the pressure change is prescribed and couple it hydrodynamically to the cortical contraction and membrane deformation. By quantifying the phase space of bleb formation and dynamics, our framework serves to delineate the range and scope of bleb-associated cell motility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.