Abstract
AbstractThe r‐size‐Ramsey number of a graph H is the smallest number of edges a graph G can have such that for every edge‐coloring of G with r colors there exists a monochromatic copy of H in G. For a graph H, we denote by Hq the graph obtained from H by subdividing its edges with q − 1 vertices each. In a recent paper of Kohayakawa, Retter and Rödl, it is shown that for all constant integers q, r ≥ 2 and every graph H on n vertices and of bounded maximum degree, the r‐size‐Ramsey number of Hq is at most , for n large enough. We improve upon this result using a significantly shorter argument by showing that for any such graph H.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.