Abstract

We present results obtained from the time-resolved X-ray spectral analysis of the Narrow-Line-Seyfert 1 galaxy SWIFT J2127.4+5654 during a ~130 ks XMM-Newton observation. We reveal large spectral variations, especially during the first ~90 ks of the XMM-Newton exposure. The spectral variability can be attributed to a partial eclipse of the X-ray source by an intervening low-ionization/cold absorbing structure (cloud) with column density N_H = 2.0^{+0.2}_{-0.3}e22 cm^-2 which gradually covers and then uncovers the X-ray emitting region with covering fraction ranging from zero to ~43 per cent. Our analysis enables us to constrain the size, number density, and location of the absorbing cloud with good accuracy. We infer a cloud size (diameter) of $D_c < 1.5e13 cm, corresponding to a density of n_c > 1.5e9 cm^-3 at a distance of R_c > 4.3e16 cm from the central black hole. All of the inferred quantities concur to identify the absorbing structure with one single cloud associated with the broad line region of SWIFT J2127.4+5654. We are also able to constrain the X-ray emitting region size (diameter) to be D_s < 2.3e13 cm which, assuming the black hole mass estimated from single-epoch optical spectroscopy (1.5e7 M_sun), translates into D_s < 10.5 gravitational radii (r_g) with larger sizes (in r_g) being associated with smaller black hole masses, and viceversa. We also confirm the presence of a relativistically distorted reflection component off the inner accretion disc giving rise to a broad relativistic Fe K emission line and small soft excess (small because of the high Galactic column density), supporting the measurement of an intermediate black hole spin in SWIFT J2127.4+5654 that was obtained from a previous Suzaku observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.