Abstract
In this short note we construct two families of examples of large stratifying systems in module categories of algebras. The first examples consist on stratifying systems of infinite size in the module category of an algebra A. In the second family of examples we show that the size of a finite stratifying system in the module category of a finite dimensional algebra A can be arbitrarily large in comparison to the number of isomorphism classes of simple A-modules. We note that both families of examples are built using well-established results in higher homological algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.