Abstract

Laser powder bed fusion (LPBF) is useful for manufacturing complex structures; however, factors affecting the forming quality have not been clearly researched. This study aimed to clarify the influence of geometric characteristic size on the forming quality of solid struts. Ti–6Al–4V struts with a square section on the side length (0.4 to 1.4 mm) were fabricated with different scan speeds. Micro-computed tomography was used to detect the struts’ profile error and defect distribution. Scanning electron microscopy and light microscopy were used to characterize the samples’ microstructure. Nanoindentation tests were conducted to evaluate the mechanical properties. The experimental results illustrated that geometric characteristic size influenced the struts’ physical characteristics by affecting the cooling condition. This size effect became obvious when the geometric characteristic size and the scan speed were both relatively small. The solid struts with smaller geometric characteristic size had more obvious size error. When the geometric characteristic size was smaller than 1 mm, the nanohardness and elastic modulus increased with the increase in scan speed, and decreased with the decline of the geometric characteristic size. Therefore, a relatively high scan speed should be selected for LPBF—the manufacturing of a porous structure, whose struts have small geometric characteristic size.

Highlights

  • As a unique type of structural and functional material, a porous structure has unique advantages in fields including filtration and separation [1], energy absorption [2], heat exchange [3], electromagnetic shielding [4], and artificial implants [5], and is widely used in aerospace, automotive, chemical, and biological medical industries

  • The existing experimental experimental results geometric characteristic certain The existing results suggested suggested that that the the geometric characteristic size size within within aa certain range would affect the physical characteristics of an laser powder bed fusion process (LPBF)-fabricated porous structure, including range would affect the physical characteristics of an LPBF-fabricated porous structure, including the the morphology features, relative density, microstructure, and mechanical properties

  • (0.4 into to 1.4 mm) were fabricated by selective this study, taking the geometric characteristic consideration, samples consisting of laser melting with three scan speeds

Read more

Summary

Introduction

As a unique type of structural and functional material, a porous structure has unique advantages in fields including filtration and separation [1], energy absorption [2], heat exchange [3], electromagnetic shielding [4], and artificial implants [5], and is widely used in aerospace, automotive, chemical, and biological medical industries. The porous structure can be manufactured from materials including metal [6,7], ceramics [8], and polymers [9]. With the deepening of their application, porous structures with function-oriented design have been widely developed to obtain precise and complex structures, such as porous implants [10]. Using a layer-wise building approach and a direct link with a Metals 2019, 9, 416; doi:10.3390/met9040416 www.mdpi.com/journal/metals

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.