Abstract

The fatigue strength under reversed direct stress was ascertained for specimens of various diameters in the range from 0·19 inch to 2·4 inches, the largest diameter being determined by the capacity of the machines available. Two steels were used in this investigation—a 25-ton mild steel and a 65-ton, per cent nickel-chromium steel. The specimens were either plain or notched (transverse hole) and, as far as possible, geometrical similarity was preserved with regard to the transition radii and the diameter of the transverse hole. A few fatigue tests on other types of notch, such as a circumferential V-groove and a shoulder, were also carried out. No intrinsic size effect with either material was observed with the plain specimens. With transverse-hole specimens in mild steel, the fatigue limit was ±8·4 tons per sq. in. for specimens of 0·33 inch diameter, and 6·1 tons per sq. in. for specimens of 1·7 inches diameter, thus showing that an appreciable size effect was present. A similar size effect was found with the alloy steel specimens containing a transverse hole, and fatigue limits of ±17·1 and ±13·9 tons per sq. in. respectively were obtained for these two sizes of specimen. It is suggested that the low values of fatigue-strength reduction factors usually associated with mild steel as a result of laboratory tests do not apply to the larger sections of this material commonly employed in engineering practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.