Abstract

The extinction curves of single clouds, seen towards the stars HD 147165, 179406 and 202904, have been modelled using various mixtures containing both the bare and inhomogeneous (composite and/or multilayer) grains. It has been shown that the models composed of the bare graphite and silicate grains together with the multilayer grains containing silicates, organic refractory and water ice, are more useful in explaining extinction under the reduced cosmic abundances. The models based on Mathis' composite grains or on Greenberg & Li's core-mantle grains can also provide quite good fits of the extinction and the measured scattering parameters, but still require an excessive amount of carbon which results in too large a C/O ratio. The inhomogeneous grains essentially contribute to the extinction in practically the whole wavelength range of our extinction curves. As a rule, such grains have quite wide size distributions, centred at around 100 nm, although graphite grains are mainly of small sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.